
RDynamic is an R Package for Dynamic Modeling

1 Introduction

R. Woodrow Setzer
National Center for Computational Toxicology

US Environmental Protection Agency

July 16, 2008

Why another package for dynamic modeling? While other packages are quite good at facilitating dynamic modeling,
they generally are fairly inadequate when it comes to using the resulting dynamic models with data. Real data come
from often complex experimental designs, so that the least squares and weighted least squares approaches that are
available in modeling packages that focus on dynamic modeling are often inadequate. RDynamic was written to
allow dynamic models (models written as systems of ordinary differential equations) to be written in a simple syntax,
thentranslatedintoacsourcefi lethatcanbecompi led, dynamicallyloaded, andintegratedwiththe de Solve package
already avai I able in R.

While it may prove useful in other arenas, RDynamic was written primarily to help with physiologically-based phar­
macokinetic and pharmacodynamic models. Such models typically are defined as systems of a few tens of ordinary
differential equations, and may have dozens or hundreds of parameters, most of which are based on known (or sup­
posed) physiological constants. Unlike many dynamic models in biomathematics, whose value is largely in their
qualitative results, PBPK/PD models are intended to produce quantitative predictions. Thus, there is value in being
able to develop such models so that they can be embedded in sophisticated statistical methodologies.

2 Using a Model Produced by RDynamic

Models produced by R)ynami c: : ode2c() are used just like any other R function. When it is called, the model
function runs the dynamic model and returns the values of state variables at a prespecified set of desired time points.
The result of such a call is often referred to as a "simulation" in what follows.

3 Components of a Dynamic Model

It is convenient to consider the variables in a dynamic model with respect to how their values change in the course of
a simulation. RDynamic divides variables in a model into two groups. Para!'TBterscontrol the detailed behavior of
a model, and are constant through any simulation. They may be set independently, or may depend upon the values of
otherparameters. Oncesetatthebeginningofasimulationrun, thevaluesofallparametersremainconstant. Variables
are all the variables that change value during a simulation run. Together, they describe those aspects of a system that
evolve during a simulation, and, thus, model those values of the target system that change overtime. Variables include
both state variables, whose value is dermined intrinsically, for example, as described by systems of difference or
differential equations, and which require initial values, variables whose value is determined extrinsically (or forcings),
and variables that are functions of the other variables. An example of the first in a PBPK model are amounts of parent
compound in a tissue compartment. An example of a variable whose value is determined extrinsically would be an
indicator variable that changes from 0 to 1 at 8:00am and from 1 to 0 at 5:00PM, and indicates whether an inhalation

1

ED_001592_00018032-00001

exposure is occurring. Finally, the concentration of parent compound is of interest, and is the amount divided by the
tissue volume, in a PBPK model.

The model definition needs to describe several characteristics of the dynamic system:

l) the values of parameters, and how the values of some parameters are derived from the values of others;

l) the initial values of state variables (which may be determined by parameters);

l) and how each state variable changes value, as a function of time, parameter values, and the values of other state
variables.

Two special cases for how state variables change value are covered in special structures in RDynamic: continuous
change over time, described by systems of ordinary differential equations, and discrete changes over time, described
by structures called events. The value of any given state variable may jump from time to time, or when state variables
satisfy a predetermined condition, as well as change continuously between jumps. For example, (at least as an approx­
imation) stomach contents change continuously in time as the stomach empties into the small intestine, but may jump
discretely with periodic gavage dosing or eating events.

A simulation of an RDynamic model results in a matrix of valuesofstatevariablesatadiscretesetof times, specified
in advance of the simulation (as well as auxiliary information about the run that produced the output, to facilitate
documentation).

4 The RDynamic Language

In RDynamic,thecharacteristicsthattogetherdescribeadynamicsysternaredefinedinaseparateblockofcode,each
with its own syntax. It is better to think of describing a dynamic system with RDynamic, rather than programming
it. Thus, statements within each block may be written in any convenient order (with some logical exceptions in the
EVENT block). In particular, values may be used before they are defined, if that leads to a clearer exposition. The
function0de2ctakescareofturn ingthemodeldescri ptioni ntoaprogramthatcanbeexecutedtosimu latethedynamic
system. Two kinds of comments are available to clarify the model exposition and facilitate the construction of online
documentation for the model. Units may be specified and will be tracked if supplied. In this section, I first go through
an example of a model in RDynamic, then describe each of the elements of the language in more detail.

4.1 Example: PBPK Model for Pyrethroid Kinetics

This example is included in full in the appendix.

4.1.1 Prolog

RDynamic includes language elements designed to encourage model documentation, by allowing narrative docu­
mentation in the model file that will be incorporated into online documentation in the final compiled package. The
model prolog includes several subsections.

~itle: Mbdel for Pyrethroid kinetics
@/ersion: 11
~te 09/20/2007
@\uthor: R. \flbodrON Setzer
@3EGIN ~script ion
Mbdel for pyrethroid absorption, distribution, and rretabol ism. The
pararreter values in the current file are for del tarrethrin, with physiological
pararreters for rats, but the intent is for the rrodel structure to be the

2

ED_001592_00018032-00002

saTe for any pyrethroid, and hUTBns as wei I as rats.
@:I'D ~script ion
@3EGIN O::C
This is a trans I at ion of M3t lab code by Mi rfazael ian et al., rmdi tied by
Rogel io Tornero and Steve Godin. The translation closely follows the
or i g i na I code ; the a:Es
are largely in the saTe order as in the original. State variables are
slightly reordered.
@:I'D D0c

Note the keyword:value pairs for keywords Title, Version, Date, and Author. They are introduoed with an "@",and
separated by ":" and any number of spaces. The values in each case should be short, and are incorporated both into
the online help and the model object itself. In particular, the version number is saved with the compiled model, and
documents results, so any simulation output contains the version number for the model that produoed it. Thus, as
long as the modeler is careful to update the version number of each model, it is possible to track modeling results
back to the version of the model that produoed them. Two longer fields are available in the prolog: "Description" and
"DOC". These are both introduoed by "@BEGIN" and closed with "@END", followed by the name of the field. The
"Description" field should be fairly short, just a few sentences that give a high level description of the model. Any
more detailed documentation should go into "DOC".

4.1.2 VARIPB....ES

The VJ>RIABLES block contains declarations and (when required) initializations of quantities that change with time.
These variables fall into three general categories: state variables, which need to be assigned initial values, and whose
trajectory through time define the dynamic system; inputs, whose values change autonomously through time, and
represent forcings for the dynamic system (such as repeated dosing in a pharmacokinetic model, periodic nutrient
inputs in an ecological model, or greenhouse gas concentrations in a climate model); and variables whose value is
interesting, but which are functions of other values in the system (such as concentrations, when the corresponding
masses are state variables). These latter variables do not need initialization, but do need to be documented, and
flagged so their values are retained. VJ>RIABLEScontains two sub-blocks for declaring state variables and inputs, each
bracketed with a BEGIN- END pair.

Any state variable in the o::NTIN...n.S or JLNPS portion of the model whose value is not just a function of other
variables will need to be both declared and given initial values. This occurs in the STATE subblock. Initial values
may either be constants (since this is a PBPK model for an exogenous compound, the initial concentration in all
tissue compartments is 0.0, for example), or an algebraic expression involving the values of parameters (defined in
the P~ block) and constants. Here is part of the VJ>RIABLES block of the pyrethroid model (omissions are
marked by el ipses):

BEGIN VJ>RIABLES
BEGIN STATE# NaTes and initial values

D0sing -Oral route
ASlM = stamch @ (urmle) Prnt in stamch ;
A I NT = 0. 0 @ (urm I e) Prnt i n i n test i ne
Oral = 0.0 @Prnt absorbed via the oral pathway;

D0sing - IV route
riV = ivdose*B/\f'rmi/Tinf @rate of injection;

END# State
l.ffi @Rate of uri nary e I imi nation;

3

ED_001592_00018032-00003

CA. @Concentration in arterial blood;
OJF;

8\0 #Va r i ab I es

Theblockbeginswith "BEGIN VI>RIABLES'' and ends with "8\0" (the"# State" is a comment which is not required,
but helps make the code more readable). Each state variable that requires an initial value must appear in the STAlE
block, separated from its initial value by the"=" sign. The initial value may be numeric (e.g., all the 0.0 values) or
an algebraic expression using variables defined in the P~ block. Document strings start with an ampersand
('@')and continue to the end of the line. Document strings should be thought of as optional parts of the statement.
Statements are terminated with semicolons(";").

Variables that are simply functions of other variables, and whose values are of interest, are declared in a KEEP dec­
laration. KEEP declarations begin with the keyword KEEP, followed by variable names and documentation strings,
separated by commas. The entire statement is terminated by a semicolon. Only one KEEP statement is allowed in the
STAlE block, but it may span multiple lines. Note that, since the comma is used as a separator, it may not appear in
any documentation strings in a KEEP statement. State variables may also be declared and initialized as arrays. See
section 4.2.4 for detai Is.

4.1.3 Comments

Two kinds of comments are used here and elsewhere in RDynamic. Comments that start with a "#" symbol are
used to annotate the file containing the model description. The parser stops reading a line when it reaches a "#",so
anything can be put after that symbol. This kind of comment is a good way to label different parts of the code. In
the example, state variables are grouped and identified as, for example, relating to dosing or blood concentrations.
Multiline comments can be created using the C-languagestyle "I* * 1":

I* This is an exaTple of a rrul ti-line camrrent in ADynamic.

*I

It helps to indent the block on the left, so it is easier to read.
A I so, i nden t bu I I e t s :

-Good for notating changes to the code

- I isting reasons for a particular construction

- etc.

The comment delimiters(" I* *I") can appear anywhere on a line. The parser will ignore everything between them.
Comments that start with a'@' introduce information that will go into the documentation file. In the STAlE block, it
is best to think of the declarations as having two separators: "=", that indicates an association between a state variable
and its initial value, and '@', that separates the previous pair and a descriptor. This is a one-line comment, used
generally for labeling a state variable. It is also is useful for documenting the units of the state variable.

4.1.4 PARt¥1/ETERS

The P~ block is syntactically similar to the STAlE block. It is a list of variable names and initializers,
separated by "=" signs. The '@' comment works just as it does in the STAlE block, as do the other comments. Here is
an excerpt from the pyrethroid model:

BEGINP~

#Dose-related--

4

ED_001592_00018032-00004

Ora I gavage:

oraldose = 0.0;
stamch = oraldose * BN * rml;

IV I n j ec t i on :
ivdose=O.O;
Tinf=0.005;

#Physiological ParaTeters (These are rat values) --------------------

BN
a:c

= 0.41
= 14.10

@kg;
@ (Lih/kgA0.75) Brown et al [60 * 0.235];

#Del taTethrin specific paraTeters ----------------------------------

r-:N\1 = 505.
rm I = 1 000 /r-:N\1

#Liver rretabol ic clearance
Clox = 5.3
Clest = 0.0
Kbld = 0.0012

END # ParaTeters

@1\!blecular \t\18ight (ug/urml);
@correction factor for rrg- ->urm I ;

@ L/h/kg;
@ L/h/kg;
@ Llh/ml serum;

Note that valuES on the right hand side of assignments may be numbers or algebraic exprESSions of other parameters.
Users may assign new valuES at the beginning of a simulation to parameters that have been initialized with numbers
(primary parameters). Parameters initialized with exprESSions (secondary parameters), are determined by the value;
of primary parameters and other secondary parameters. Their value can not be assigned arbitrarily in simulation runs.

As in other blocks, the modeler is free to write parameter definitions in any order that is convenient. This allows
definitions of related parameters to be grouped together to facilitate documentation.

The algebraic exprESSions that appear on the right hand side of parameter declarations may include any of a large
number of special functions. See section 4.2.2 for a I ist.

Parameters may also be declared and used as arrays. See 4.2.4 for more detai Is.

4.1.5 CXNTIN.D.JS

<XNTI N.n.JS includES definitions of variablES and their time derivativES, and dESCribES how variablES change value
continuouslyintime. Thisisincontrastto JUVPS (discussedinthenextsection),whichdescribESaltationsinthevalue;
of state variablES. This is also where variablES whose valuES come from explicit functions of other state variablES,
parameters, and time are defined. Again, an excerpt from the pyrethroid model:

BEGIN <XNT I N.n.JS

5

ED_001592_00018032-00005

#Define concentrations based on state variable (arounts)
I i n t race I I u I a r
E ext race I I u I a r

CA. = ABLI\!BL ;

#Concentration in the blood cOTpartrretnt and blood clearance

OJ = (CF*OJF + CR*OJR + Q3*0JS + ~*OJm'.J + Q... *OJL) ICC;

GaEP' = Kbld*\!BL*CA; #blood clearace via esterases (UTOI/h)
ABL' = CC*OJ - CC*CA - GaEP' + r IV;

di ffusion-1 imi ted cOTpartrrents

AEF'
AIF'

= CF*(CA-OJF) + PAF*(CIF/PF-OJF);
= PAF*(OJF-CIF/PF);

8\0 #Continuous

(UTOI/hr)

There are no documentation strings in theo::NTIN...O..Ssection, but the other two comment types may be used freely.
Notethatderivativesareindicatedbyappendinganapostrophetostatevariablename(e.g. AEF').Namesofderivatives
may be used on the right hand side of variable definitions, as well. Any variable that appears on the left hand side of
an assignment that is not declared as a state variable w iII be invisible outside the scope of the o::NT I N...OJ3 block.

4.1.6 JllVPS

The JUVPS block defines when the values of state variables jump, and by how much. JUVPS must contain three
sub-blocks to be complete:

l) BIENT: defines what happens. Any state variable may appear on the right hand side of an assignment, and any
legal expression involving state variables and parameters may appear on the left hand side. FCR loops and IF
THENELSEcontrolstructuresareallowed. Thespecialvariable T lrvE wi llcontainthevalueofthetimevariable
when the event was triggered. The special function II\6ERT" _BIENTmay be used to add new events to the action
list (seePCTICNS, below. There may be and often will be multiple events defined in a model.

l) 1RI<:3::ER defines when events may happen. Generally, think of this as a function that returns 0.0 when you
want to trigger an event. The final expression in a 1RI<:33:R is the return value. It must be a scaler, and must be
a legal right hand side expression. A trigger function may be a function ofT lrvE and any or all state variables.

A special form applies when you want to set a trigger to go off at a particular time. This is the form shown in
the example, in which the final expression in the trigger definition is of the form "T lrvE == va I ue; ". There
may be multiple 1RI<:33:Rblocks in JUVPS.

l) PCTICNS: associates triggers with events. It is just a string of pairs, first a trigger, followed by an event. If
there are multiple events listed for a trigger, they are executed in the order in this list. There must be only one
PCTICNSblock in a program.

Subblocks of JUVPS consist of one of the keywords with only white space (spaces and tabs) before it on its line,
followed by a left curly brace, one or several legal expressions (defined above), followed by a right curly brace on a
line by itself.

The function II\6ERT"_BIENT(wtlat, wtlen) inserts the event 'what' into the list of events to be executed when the
trigger 'when' goes off. The event 'what' must be defined in theJUMPSsection. 'when' must be a defined trigger or

6

ED_001592_00018032-00006

the special phrase 'TIME== value', where value is a constant or variable whose value is available within the E\fB\JT
function from which I N3ERf _E\fB\JT has been called.

In E\fB\JTs and 1RI<:3::3:R5, any undeclared variable will be assumed to be local, and its value will disappear on exit
from the function. Only state or local variables may appear on the left hand side of assignments in event definitions,
but right hand sides may include parameters, state variables, constants, and TIIVE. They may also include any of the
functions available in the other blocks. Finally, special IF and IF ... THEN ELSE ... blocks are available for defining
events. Here is the JUMPS block from the pyrethroid model:

8831N JLNPS
E\fB\JT stop-infusion {
riV = 0.0;
}
1RIG::3:R \1\/hen_s top- infusion {
TIIVE == Ti nf;
}
PCTICJ\6 {
\1\/hen_stop-infusion stop-infusion;
}
8\0 # Jt..rrps

Again, only "#" and "I* *I" style comments are available.

4.2 Additional Language Details

4.2.1 Reserved Words

The following are reserved words, and should not be used as variable names: BEGIN, END, PARAMETERS, STATE,
CONTINUOUS, FUNCTION, ARRAY,JUMPS, EVENT, TRIGGER, ACTIONS, IF, THEN, ELSE, FOR, TIME,
KEEP. Reserved words are written in all capital letters.

4.2.2 Arithmetic Operators and Mathematical Functions

The following operators may be used whenever mathamatical operations are allowed: the usual operators for addition,
subtraction, multi pi ication, and division: +-*I; exponentiation:A or * *. Math functions that are available are:

Function
exp(x)
log(x)
log10(x)
sin(x)
cos(x)
asin(x)
acos(x)
sqrt(x)
sinh(x)
asinh(x)
cosh(x)
acosh(x)
gammafn(x)
lgammafn(x)
beta(a, b)
lbeta(a, b)
ifthenelse(a,b,c)

Definition
exponential: eX
natural logarithm (x > 0)
base 10 logarithm (x > 0)
trigonometric sine function (argument in radians)
trigonometric cosine function (argument in radians)
trigonometric arcsine function (1 < x < 1)
trigonometric arccosine function (1 < x < 1)
square root (x l_ 0)
hyperbolic sine
hyperbolic arcsine
hyperbolic cosine
hyperbolic arccosine
the Gamma function
natural log of the Gamma function
The complete beta function
natural log of beta(a, b)
b if a is not 0, else c (not for CONTINUOUS block)

7

ED_001592_00018032-00007

Other functions may be added to these as needed.

4.2.3 Variableand Function Names

All variable names begin with an alphabetic character, and may include letters and numerals. All names are case­
sensitive.

4.2.4 Arrays

RDynamic provides a I imited implementation of arrays for parameters and state variables. Arrays are indexed begin­
ning with 1 (as in Fortran and R). Arrays are declared in either PJ>RIII\!ETER3or STAlE, and referred to as in an R array.
That is, the indices are enclosed in square brackets, and indices for the different dimensions separated by commas. To
assign a value to an element of an array, say var1[1], or var2[2,3]:

var1[1] =a+ b *TIME;
var2[2,3] = 42;

A construct is available to conveniently initialize arrays in STAlE and PJ>RIII\!ETER3, and FCR loops are available in
o:::NTII\l.ll.Sand JUVPSforsimplifying using arrays in repetitive structures. Except for the index variable declared in
a FCR loop, array indices must be integer constants.

Declaring Arrays State variables and parameters may be components of arrays. Arrays must be declared in either
the STAlE or PJ>RIII\!ETER3blocks using thel>ffi.<\Ystatement:

Pffi.<\Y var1[10], var2[3,6];

Here var1 and var2 may be parameters (in a PJ>RIII\!ETER3block) or state variables (in a STAlE block). The dimensions
must be constant integers, and an arbitrary number of dimensions is allowed. On declaration, all elements in an array
are initialized to 0.0.

Initializing Arrays Array elements in STAlE or PJ>RIII\!ETER3 may be initialized one-at-a-time just as any other
variable:

va r [12] = 12 . 9

Alternatively,elements of an array may be block initialized:

Pffi.<\Y var[2,3], var2[5];
var2 = {1., 2., 3., 4., 5.};
var = {{1 .0, 5.0, 2.1}

{var2[1], 23*Tstab, 7.3}};

lnitializers must follow the same rules as any other initializer; array elements in an array must not be used to initialize
other elements in the same array, and dependencies among arrays must form acyclic chains. That is, the following
would be illegal:

Pffi.<\Y var[2,3], var2[5];
va r 2 = { 1 . , 2 . , 3 . , 4 . , va r [1 , 3]} ;
var = {{1 .0, 5.0, 2.1}

{var2[1], 23*Tstab, 7.3}};

8

ED_001592_00018032-00008

If two arrays have the same extent, the initialization may be completely imp I icit:

BEG I N PJ>RIII'vET'ffiS
PWAY In i t[6];
lnit = {12., 0., 0., 0., 0., 0.};

B\0
BEGIN STAlE
PWAY Svar [6];
Svar = lnit;

F<R loops FCR loops are used in <XNTIN...O..S and JUVPS to simplify repetitive exprESSions. They are actually
unrolled during translation (not during execution, so I imits of FCR loops must be integer constants. The syntax is:

FCR (I ndexvar IN II im: u I im) {
expressions
}

The variable I ndexvar must not be declared elsewhere, and II imand u I immust be numeric constants. FCR loops
may be nested.

For example:

Svar[1]' = r[1] * Svar[1] - (a[1] + m[1])*Svar[1];
FCR (I in 2:6) {

Svar[l]' = a[I-1]*Svar[l-1] + r[l] * Svar[l] - (r[l] + m[l]) * Svar[l];
}
Svar [7] = a[6] * Svar [6] + r [7] * Svar [7] - m[7] * Svar [7];

4.2.5 Ordering and Separating Definitions in the ~and STAlE Blocks

Multiple declarations can appear on the same I ine (though this should generally be avoided, as it makes reading and
documenting the code more difficult), and value exprESSions may extend over onto multiple lines.

P~ There is no ordering requirement for statements in the PJ>RIII'vET'ffiS block. The translater wi II option­
ally sort the declarations so that no value is used before it is declared. It is an error to define a parameter value using
other than numeric constants or expressions involving numeric constants and other parameters.

STAlE There is no ordering requirement for statements in the STAlE block, either. The translator will optionally sort
the declarations so that no value is used before it is declared. The STAlE block should include declarations for every
variable that changes through time (either continuously or in saltations through having its value defined in the JUVPS
block) There must be a state variable for each derivative defined in the <XNT I N...O..S block, at least.

4.2.6 CXNT I N.D.JS

The base variable name of every primed variable must appear in STAlE; other variables appearing on the left hand
side of assignments in <XNTIN...O..S that have not been declared in STAlE will be treated as local (and their values
inaCCESSible outside of the derivative definitions). The special variable T lrvE refers to the time at which the derivatives
are being computed, to allow for inhomogeneous systems of equations.

9

ED_001592_00018032-00009

4.2.7 JllVPS

Syntax of the IF and IF THEN ELSE Statements An EVENT or 1RI<:33:Rdefinition may contain IF and IF THEN
ELSE statements to allow for conditional computation of changes to state variable values. The syntax is similar to the
corresponding expression inC, except for mandatory curly braces:

IF (condition) {assignTBnts, possibly multi-1 ine}

and

I F (cond i t i on) {
assignTBnts, possibly multi-1 ine

} ELSE {
alternative assignTBnts, possibly multi -I ine

}

These are like the same clauses inC, and unlike in R, in that the IF ... statements do not have a return value, but are
purely control structures.

The 'condition' expression may use the usual numeric comparison operators: >, >=, <, <=, ==; and the logical
operators! (for NOT), & (for AND) and 1 (for OR). Use parentheses liberally for grouping, but the usual C language
priorities apply. The conditional expression is triggered if 'condition' evaluates to be a non-zero quantity.

5 Using RDynamic

Theresultoftranslatingan RDynamicsourcefileisan Rsourcepackage, and, optionally, an R binarypackage, ready
to be installed. The package contains online documentation for the model, and all the code to run it. To compile the
pyrethroid example if the code from Appendix A is in the file pyrethroid.ode, and install it in the folder C:\RModels,
the following commands in R would suffice:

> I ibrary(RDynamic)
> Qje2c("pyrethroiod.ode", carpi le=lRE)
> ins ta II . packages("pyrethroi d. zip", I i b="C: /R\!bde Is", repos=NULL)

To use the newly compiled model:

>I ibrary(pyrethroid, I ib.loc="C:/R\!bdels")

Then, to get help for the function pyrethroid(),

> ?pyrethroid

will return all the documentation originally entered into the model file, as well as details on how to call the function
which includes the names of all the modifiable parameters and all the state variable names.

The full call to the new model function looks like:

pyrethroid(tirTBs, ystart, RTol, ATol, PanTs, ...)

'times' is a vector of times at which values of the state variables should be output. 'ystart' is an optional vector of
initial values. If it is omitted, the initialization in the model file is used. However, it may be useful to continue the
simulation for longer times after an initial run. Then, ystart is set to the final state in the previous model run, and
times starts with the final time in the previous run. 'RTol' and 'A To I' control precision of the numerical solution; you
may need to experiment with their values. 'Parms' is a named vector of default parameter values. It wi II default to
the values in the model file, but it may be convenient to have several sets of values, for example for different species.
Finally, values for individual parameters may be provided as arguments, as IVDOSE = 10, for example.

[more on the structure of the output here]

10

ED_001592_00018032-00010

A Example: A Complete PBPK Model for Pyrethroid Kinetics

11

ED_001592_00018032-00011

